$证明:(2)∵FG//CD,$ $∴△BCD∽△BFG.$ $∴\frac{CD}{FG}=\frac{BD}{BG},∠CDF= ∠DFG.$ $∵DF、BE为折痕,$ $∴∠CDF=∠BDF,AB=BG.$ $∴∠DFG=∠BDF.$ $∴GD=FG.$ $∴\frac{CD}{GD}=\frac{BD}{BG}$ $∵四边形ABCD为平行四边形,$ $∴AB=CD.$ $∴BG=CD.$ $∴\frac{BG}{GD}=\frac{BD}{BG}.$ $∴BG²=BD.GD,$ $即G恰好是对角线BD的一个黄金分割点$(更多请点击查看作业精灵详解)
$证明:(1)∵四边形ABCD是正方形,$ $∴DA=AB,∠BAD=∠ABF=90°$ $∴ ∠PAD+∠BAF=90°.\ $ $∵ DE⊥AF,$ $∴∠APD=90°.\ $ $∴∠PAD+∠ADE=90°.\ $ $∴ ∠ADE=∠BAF.$ $在△DAE和△ABF中,$ $\begin{cases}{∠ADE=∠BAF,}\\{DA=AB,}\\{∠DAE=∠ABF,}\end{cases}$ $∴△DAE≌△ABF.$ $∴AE=BF$
$解:(3)过点E作ET⊥CD于点T,$ $则∠ETG=90°$ $∵四边形ABCD是正方形$ $∴AB=BC,∠ABC=∠C=90°$ $∴四边形BCTE是矩形,∠ABF=∠ETG$ $∴ET=BC=AB,BE=TC,∠BET=∠AET=90°$ $∴∠AEP+∠TEG=90°$ $∵AF⊥EG$ $∴∠APE=90°$ $∴∠AEP+∠BAF=90°$ $∴∠BAF=∠TEG$ $∴△ABF∽△ETG$ $∴BF=TG=x$ $∵四边形ABCD是正方形$ $∴AD=AB=2,AD//BC,DG//BE$ $∴△BPF∽△DPA,△BPE∽△DPG$ $∴\frac {BP}{DP}=\frac {BF}{DA},\frac {BE}{DG}=\frac {BF}{DA}$ $∴\frac {BE}y=\frac x 2$ $∴BE=TC=\frac 1 2xy$ $∵TG=CD-DG-TC$ $∴x=2-y-\frac 1 2xy$ $∴y=\frac {4-2x}{x+2}(0\leqslant x\leqslant 2)$
$证明:(1)过点E作EM⊥BC,垂足为M,$ $则∠EMF=∠EMB= 90°.$ $∴在△EMF中,∠FEM+∠BFH=90°.$ $∵四边形ABCD是矩形,$ $∴∠A=∠ABC=∠C=90°.$ $∴∠EMF=∠C,四边形ABME是矩形$ $∴AB=EM.$ $∵EF⊥BG,$ $∴∠BHF=90°.$ $∴在△BHF 中,∠FBH+∠BFH=90°$ $∴ ∠FBH=∠FEM.$ $∴△EMF∽△BCG.$ $∴\frac{EF}{BG}=\frac{EM}{BC}$ $∴\frac{EF}{BG}=\frac{AB}{BC}$
|
|