$解:(1)设BC=x$
$∵矩形ABCD绕点A按顺时针方向旋转90°$
$得到矩形ABC'D'$
$∴点A、B、D'在同一条直线上,AD'=AD=BC=x,D'C'=AB'=AB=1,$
$∠BAD=∠D'=90°$
$∴D'C'//DA$
$又∵点C'在线段DB的延长线上$
$∴∠D'C'B=∠ADB$
$∴△D'C'B∽△ADB$
$∴\frac {D'C'}{AD}=\frac {D'B}{AB}$
$∴\frac 1 x=\frac {x-1}{1}$
$解得x_1=\frac {1+\sqrt {5}}2,x_2=\frac {1-\sqrt {5}}2(不合题意,舍去)$
$∴BC=\frac {1+\sqrt {5}}2$