$解:(1)如图①,点D_{1}、D_{2}、D_{3} 即为所求$
$(2)\because \angle ABC=80^{\circ},对角线BD平分\angle ABC,$
$\therefore \angle ABD=\angle DBC=40^{\circ},$
$\therefore \angle A+\angle ADB=140^{\circ},$
$\because \angle ADC=140^{\circ},$
$\therefore \angle BDC+\angle ADB=140^{\circ},$
$\therefore \angle A=\angle BDC,$
$\therefore \triangle ABD∽\triangle BDC,$
$\therefore BD是四边形ABCD的“相似对角线”$(更多请点击查看作业精灵详解)