$解:\because 四边形{ABCD}内接于{\odot O},{\angle A= 90^{{\circ} }},$
$\therefore {\angle C= 180^{{\circ} }-\angle A= 90^{{\circ} }},{\angle ABC+ \angle ADC= 180^{{\circ} }}.$
$作{AE\perp BC}于{E},{DF\perp AE}于{F},$
$则{CDFE}是矩形,{EF= CD= 10}. $
$在{ \rm{Rt} \triangle AEB}中,∵{\angle AEB= 90^{{\circ} }},{AB= 17},{\cos \angle ABC= \frac{3}{5}},$
$\therefore {BE= AB\cdot \cos \angle ABE= \frac{51}{5}},$
$\therefore {AE= \sqrt{A{B}^{2} - B{E}^{2}}= \frac{68}{5}},$
$\therefore {AF= AE-EF= \frac{68}{5}-10= \frac{18}{5}}.$
$\because {\angle ABC+ \angle ADC= 180^{{\circ} }},{\angle CDF= 90^{{\circ} }},$
$\therefore {\angle ABC+ \angle ADF= 90^{{\circ} }},$
$\because {\cos \angle ABC= \frac{3}{5}},$
$\therefore {\sin \angle ADF= \cos \angle ABC= \frac{3}{5}}.$
$在{ \rm{Rt} \triangle ADF}中,\because \angle AFD={90}^{\circ },{\sin \angle ADF= \frac{3}{5}}$
$\therefore {AD= \frac{AF}{\sin \angle ADF}= \frac{\frac{18}{5}}{\frac{3}{5}}= 6}$