电子课本网 第30页

第30页

信息发布者:
$解:(1)∵抛物线y=-x²+bx(b为常数)的顶点的横坐标为-\frac{b}{2×(-1)}=\frac{b}{2},$
$抛物线y=-x²+2x的顶点的横坐标为-\frac{2}{2×(-1)}=1,$
$∴\frac{b}{2}=1+1,$
$解得b=4$
$(2)∵点A(x_{1},y_{1})在抛物线y=-x²+2x上,点B(x_{1}+t,y_{1}+h)在抛物线y=-x²+4x上,$
$∴y_{1}=-x_{1}²+2x_{1},y_{1}+h=-(x_{1}+t)²+4(x_{1}+t).$
$∴-x_1²+2x_{1}+h=-(x_1²+t)²+4(x_{1}+t).整理,得h=-t²-2x_{1}t+2x_{1}+4t\ $
$①∵h=3t,$
$∴3t=-t²-2x_{1}t+2x_{1}+4t,即t(t+2x_{1})=t+2x_{1},$
$∵x_{1}≥0,t>0,∴t+2x_{1}>0.$
$∴t=1.$
$∴h=3\ $
$②将x_{1}=t-1代入h=-t²-2x_{1}t+2x_{1}+4t,得h=-t²-2t(t-1)+2(t-1)+4t,$
$即h=-3t²+8t-2=-3(2-\frac{4}{3})²+\frac{10}{3}$
$∵-3<0,$
$∴当t=\frac{4}{3},即x_{1}=\frac{1}{3}时,h取最大值,为\frac{10}{3}$
$证明:(2)∵易得∠ACB=90°,$
$∴在△ACB中,∠BAC+∠ABC=90°$
$∵ ∠BAC=∠BDA,$
$∴∠EAG=∠BDA +∠ABC=90°.\ $
$由(1),得△ACB∽△DCA,$
$∴\frac{AC}{DC}=\frac{AB}{DA}$
$∴AC.DA=DC.AB.$
$∵DE.AM=AC.AD,$
$∴DE.AM=DC.AB.$
$∴\frac{AM}{DC}=\frac{AB}{DE}$
$∵∠BAC=∠BDA, 即 ∠BAM = ∠EDC,\ $
$∴ △AMB ∽△DCE.$
$∴∠ABM=∠E.$
$∵△EAG、△BNG的内角和均为 180°,∠EGA=∠BGN,$
$∴∠EAG=∠BNG=90°.$
$∴BM⊥CE$(更多请点击查看作业精灵详解)