$解:∵(x-3)(x+1)(x+7)=x^{3}+5x^{2}-17x-21$
$∴去分母得x+7-k(x- 3)=x+1$
$解得x=\frac{6+3k}{k}$
$∵方程\frac{1}{(x-3)(x+1)}-\frac{k}{(x+1)(x+7)}=\frac{x+1}{x^{3}+5x^{2}-17x-21}无解$
$∴k=0或x=-1或3或-7$
$当x=-1时,\frac{6+3k}{k}=-1,解得k=-\frac{3}{2},经检验符合要求;$
$当x=3时,\frac{6+3k}{k}=3,方程无解;$
$当x=-7时,\frac{6+3k}{k}=-7,解得k=-\frac{3}{5},经检验符合要求;$
$当k=0时,方程x+7-k(x-3)=x+1无解,则原方程无解$
$∴k的值为-\frac{3}{2}或-\frac{3}{5}或0$