$解:(2)②过点D作DH⊥BC于点H,如图$
$∵AC=AD,∠CAD=60°,∴△ACD为等边三角形$
$∴AC=CD=8,∠ACD=60°$
$∵∠ACB=90°,∴∠DCH=30°$
$∴CH=4\sqrt {3},DH=4$
$∵BC=6\sqrt {3},∴BH=BC-CH=2\sqrt {3}$
$∴DB=\sqrt {DH^{2}+BH^{2}}=2\sqrt {7}$
$(3)AC=\sqrt{2}AB,理由如下:$
$过点A作AE⊥AB,且AE=AB,连接ED, EB$
$如图,∵AE⊥AB,∴∠EAD+∠BAD=90°$
$又∵∠BAD+∠BCD=90°,△BCD为等边三角形$
$∴∠EAD=∠DCB=60°$
$∵AE=AB,AB=AD$
$∴AE=AD,∴△AED为等边三角形$
$∴AD=ED,∠EDA=∠BDC=60°,∴∠BDE=∠CDA$
$∵ED=AD,BD=CD,△BDE≌△CDA,∴AC=BE$
$∵AE=AB,∠BAE=90°,∴AB^{2}+AE^{2}=BE^{2}$
$∴2AB^{2}=BE^{2},∴BE=\sqrt{2}AB,∴AC=\sqrt{2}AB$