解:$(1)$灯泡$L $标有$''6\ \mathrm {V} 6\ \mathrm {W}''$字样,则灯泡的额定电压:$U_{额}=6\ \mathrm {V},$额定功率:$P_{额}=6\ \mathrm {W},$
根据$P=UI $可得,灯泡的额定电流:$I_{额}=\frac {P_{额}}{U_{额}}=\frac {6\ \mathrm {W}}{6\ \mathrm {V}}=1\ \mathrm {A},$
根据欧姆定律可得,灯泡$L $正常发光时的阻值:$R_{L}=\frac {U_{额}}{I_{额}}=\frac {6\ \mathrm {V}}{1\ \mathrm {A}}=6 \ \mathrm {Ω};$
$(2)S_{1}$和$S_{3}$闭合时,变阻器$R_{2}$被短接,电路为定值电阻$R_{1}$接在电源两极的简单电路,电流表测量电路的电流,$I_{1}=0.6\ \mathrm {A},$
根据$I=\frac {U}{R},$可得定值电阻$R_{1}$的阻值:$R_{I}=\frac {U_{1}}{I_{1}}=\frac {U}{I_{1}}=\frac {6\ \mathrm {V}}{0.6\ \mathrm {A}}=10 \ \mathrm {Ω};$
三个开关$S_{1}、$$S_{2}、$$S_{3}$都闭合时,变阻器$R_{2}$被短接,定值电阻$R_{1}$与灯泡$L $并联,
灯泡$L $正常发光,灯泡的实际功率:$P_{L}=P_{额}=6\ \mathrm {W}$
根据$P=UI $可得,$R_{1}$消耗的电功率:$P_{1}=U_{1}I_{1}=UI_{1}=6\ \mathrm {V}×0.6\ \mathrm {A}=3.6\ \mathrm {W},$
整个电路消耗的电功率:$P_{总}=P_{1}+P_{L}=3.6\ \mathrm {W}+6\ \mathrm {W}=9.6\ \mathrm {W};$
$(3)$只闭合开关$S_{1},$定值电阻$R_{1}$与变阻器$R_{2}$串联,电压表测量变阻器两端的电压,电流表测量电路中的电流,由$P=UI $可知,当$R_{1}$两端的电压与$R_{2}$两端的电压的比值最小时,$R_{1}$电功率与$R_{2}$电功率之比最小,
当变阻器$R_{2}$两端电压最高时,电压表的量程为$0~3\ \mathrm {V},$所以当电压表示数即变阻器$R_{2}$两端的电压:$U_{2}=3\ \mathrm {V} $时,$R_{1}$两端的电压与$R_{2}$两端的电压的比值最小,
由串联电路电压规律可得,$R_{1}$两端的电压:$U_{1}=U-U_{2}=6\ \mathrm {V}-3\ \mathrm {V}=3\ \mathrm {V},$
由欧姆定律可得,通过$R_{1}$的电流:$I'_{I}=\frac {U_{1}}{R_{1}}=\frac {3\ \mathrm {V}}{10 \ \mathrm {Ω}}=0.3\ \mathrm {A},$
串联电路中电流处处相等,通过$R_{2}$的电流:$I'_{2}=I'_{1}=0.3\ \mathrm {A},$
由欧姆定律可知,变阻器$R_{2}$的接入电阻:$R'_{2}=\frac {U_{2}}{I'_{2}}=\frac {3\ \mathrm {V}}{0.3\ \mathrm {A}}=10 \ \mathrm {Ω}<20 \ \mathrm {Ω}.$
由$P=UI $可得,$R_{1}$的电功率:$P'_{1}=I'_{1}R'_{1}=0.3\ \mathrm {A}×3\ \mathrm {V}=0.9\ \mathrm {W}.$