$解:(2)在 Rt△ABC 中$
$∵ ∠C=90°,∴sinA=\frac{a}{c},sin B=\frac{b}{c}$
$∴sin^{2}A+sin^{2}B=\frac{a^{2}+b^{2}}{c^{2}}$
$∵∠C=90°,∴BC^{2}+AC^{2}=AB^{2}$
$即a^{2}+b^{2}=c^{2}$
$∴sin^{2}A+sin^{2}B=1$
$(3)∵∠A+∠B=90°,∴∠C=90°,∴sin^{2}A+sin^{2}B=1$
$∵sinA=\frac{5}{13},∴sinB=\sqrt{1-(\frac{5}{13})^{2}}=\frac{12}{13}$