$解:(1)∵CD⊥AB,∴△ACD,△BCD均为直角三角形$
$在Rt△BCD 中,∵ BD=6,tan B=\frac{CD}{BD}=\frac{2}{3},∴ CD=4$
$在Rt△ACD中,AC=\sqrt{CD^{2}+AD^{2}}=2\sqrt{5}$
$(2)过点E作EF⊥AB,垂足为F$
$∵CD⊥AB,EF⊥AB,∴CD//EF$
$∵E是BC的中点,∴易得EF是△BCD的中位线$
$∴DF=BF=3,EF=\frac{1}{2}CD=2,∴ AF=AD+DF=5$
$在 Rt△AEF中,AE=\sqrt{AF^{2}+EF^{2}}=\sqrt{29}$
$∴sin∠EAB=\frac{EF}{AE}=\frac{2\sqrt{29}}{29}$