$解:(3) 如图②, 连接 A G 并延长交 B C 于点 M.$
$因为 G 为 \triangle A B C 的重心,$
$所以 \frac {A G}{A M}=\frac {2}{3}, B C=2\ \mathrm {B}\ \mathrm {M}=2\ \mathrm {C}\ \mathrm {M},$
$所以 S_{\triangle A B C}=2\ \mathrm {S}_{\triangle A B M}=2\ \mathrm {S}_{\triangle ACM} .$
$设 \frac {A F}{A C}=a$
$因为 \frac {A E}{A B}=\frac {3}{4}$
$所以 \frac {S_{△AEF}}{S_{△ABC}}=\frac {AE·AF}{AB·AC}=\frac 34a, \frac {S_{\triangle A E G}}{S_{\triangle A B M}}=\frac {A E \cdot A G}{A B \cdot A M}=\frac {1}{2}, \frac {S_{\triangle A F G}}{S_{\triangle A C M}}=\frac {A G \cdot A F}{A M \cdot A C}=\frac {2}{3}\ \mathrm {a},$
$所 以 \frac {S_{\triangle A E F}}{S_{\triangle A B C}}=\frac {S_{\triangle A E G}+S_{\triangle A F G}}{S_{\triangle A B C}}$
$=\frac {S_{\triangle A E G}}{2\ \mathrm {S}_{\triangle A B M}}+\frac {S_{\triangle A F G}}{2\ \mathrm {S}_{\triangle A C M}}=\frac {1}{4}+\frac {1}{3}\ \mathrm {a},$
$所以 \frac {1}{4}+\frac {1}{3}\ \mathrm {a}=\frac {3}{4}\ \mathrm {a},$
$解得 a=\frac {3}{5},$
$所以 \frac {S_{\triangle A E F}}{S_{\triangle A B C}}=\frac {9}{20}.$