$解:(2) 连接OD.$
$因为∠E=90°,AE=2,sin∠ADE=\frac {1}{3}$
$所以AD=\frac {AE}{sin∠ADE}=6.$
$因为OA=OB,D为AB的中点,$
$所以OD⊥AB,$
$所以∠ODA=90°。$
$因为CD//OA,$
$所以∠OAD=∠ADE,$
$所以 s in ∠OAD= s in ∠ADE= \frac {1}{3} .$
$又s in ∠OAD= \frac {OD}{OA} ,$
$所以 \frac {OD}{OA} = \frac {1}{3} ,$
$所以OD=\frac {1}{3}\ \mathrm {OA},$
$所以AD= \sqrt{OA²-OD²} = \frac {2\sqrt{2}}{3}OA,$
$所以OB=OA= \frac {3\sqrt{2}}{4}\ \mathrm {AD}= \frac {9\sqrt{2}}{2} .$