$解:(2) 存在.在y=-x²+2x+3中,$
$令x=0,得y=3,$
$所以C(0,3);$
$令y=0,得-x²+2x+3=0,$
$解得x_1=-1,x_2=3,$
$所以B(3,0)。$
$因为D为OC的中点,$
$所以D(0,\frac {3}{2} ).$
$设直线BC的函数表达式为 y =k_{1}x +b_{1},$
$\begin{cases}3k_{1}+b_{1}=0\\b_1=3\end{cases}$
$解得k_{1}=-1,b_{1}=3$
$所以直线BC 的函数表达式为y=-x+3.$
$设直线BD的函数表达式为y=k_{2}x+b_{2}$
$\begin{cases}3k_{2}+b_{2}=0, \\b_{2}=\dfrac {3}{2},\end{cases}$
$解得k_{2}=-\frac {1}{2},b_{2}=\frac {3}{2}$
$所以直线BD的函数表达式为y=-\frac {1}{2} x+\frac {3}{2}$
$设P(m,-m²+2m+3)(0\lt m\lt 3),$
$则 M(m,-m+3),N(m,-\frac {1}{2}m+\frac {3}{2} ),H(m,0),$
$所以 PM=-m²+2m+3-(-m+3)=-m²+3m,$
$MN=-m+3- (-\frac {1}{2}\ \mathrm {m}+\frac {3}{2} )=- \frac {1}{2}\ \mathrm {m}+ \frac {3}{2} ,$
$NH= -\frac {1}{2}\ \mathrm {m}+\frac {3}{2} .$
$因为PM=MN=NH,$
$所以-m²+3m=- \frac {1}{2}\ \mathrm {m}+\frac {3}{2} ,$
$解得m_{1}= \frac {1}{2} ,m_{2}=3(不合题意,舍去),$
$则-m²+2m+3= \frac {15}{4} ,$
$所以P( \frac {1}{2} , \frac {15}{4} ).$
$故存在满足题意的点P,且点P的坐标为( \frac {1}{2}, \frac {15}{4} ).$(更多请点击查看作业精灵详解)