$解:(2) 把点 P(m,n)代入y= \frac {2}{x} ,$
$得n= \frac {2}{m}$
$所以P(m, \frac {2}{m} )。$
$过点P作PE⊥x轴于点E.PF⊥BC于点F,$
$则PE= \frac {2}{m} .$
$因为OC=2,$
$所以S_{△POC}=\frac {1}{2}×OC×PE= \frac {2}{m} ,$
$PF=|m-2|.$
$因为BC=1,$
$所以S_{△PBC}= \frac {1}{2}×BC×PF= \frac {1}{2} |m-2|.$
$因为S_{△POC}=4S_{△PBC},$
$所以 \frac {2}{m} =4× \frac {1}{2} |m-2|,$
$所以 \frac {1}{m} =|m-2|.$
$当m\gt 2时, \frac {1}{m} =m-2,$
$即m²-2m-1=0,$
$解得m=\sqrt{2} +1$
$(m=1-\sqrt{2} 不合题意,舍去),$
$则 \frac {2}{m} =2 \sqrt{2} -2,$
$所以P( \sqrt{2} +1,2 \sqrt{2} -2);$
$当m\lt 2时,\frac {1}{m} =2-m,$
$即m²-2m+1=0,$
$解得m=1,$
$则\frac {2}{m} =2,$
$所以P(1,2).$
$综上所述,点P 的坐标为( \sqrt{2} +1,2 \sqrt{2} -2)或(1,2).$