电子课本网 第36页

第36页

信息发布者:
$解:在Rt\triangle BCD中,\because BC的坡度为i_{1}=1:1,$
$\therefore \frac{CD}{BD}=1,$
$\therefore CD=BD=20米,$
$在Rt\triangle ACD中,\because AC的坡度为i_{2}=1:\sqrt{3},$
$\therefore \frac{CD}{AD}=\frac{1}{\sqrt{3}},$
$\therefore AD=\sqrt{3}CD=20\sqrt{3}(米),$
$\therefore AB=AD-BD=20\sqrt{3}-20\approx 14.6(米),$
$\therefore 背水坡新起点A与原起点B之间的距离约为14.6米.$
$解:如图,过点C作CF\bot DE于F,$
$由题意得,\angle D=40^{\circ},\angle ACB=68^{\circ},$
$在Rt\triangle ABC中,\angle CBA=90^{\circ},$
$\because \tan \angle ACB=\frac{AB}{CB},$
$\therefore AB=CB\times \tan 68^{\circ}=200\times 2.48\approx 496\left(m\right),$
$\therefore BE=AB-AE=496-200=296\left(m\right),$
$\because \angle CFE=\angle FEB=\angle CBE=90^{\circ},$
$\therefore 四边形FEBC为矩形,$
$\therefore CF=BE=296m,$
$在Rt\triangle CDF中,\angle DFC=90^{\circ},$
$\because \sin \angle D=\frac{CF}{CD},$
$\therefore CD=\frac{296}{0.64}\approx 462.5\left(m\right),$
$答:观光船从C处航行到D处的距离约为462.5m.$