$解:(1)∵AC=15\ \mathrm {\ \mathrm {km}},BC=20\ \mathrm {\ \mathrm {km}},AB=25\ \mathrm {\ \mathrm {km}},15^2+20^2=25^2$
$∴△ABC是直角三角形,∠ACB=90°$
$∵CD⊥AB$
$∴S_{△ABC}=\frac 12AC \cdot BC=\frac 12AB \cdot CD$
$∴CD=\frac {AC \cdot BC}{AB}=\frac {15×20}{25}=12(\ \mathrm {\ \mathrm {km}})$
$∴修通的公路CD的长是12\ \mathrm {\ \mathrm {km}}$
$(2)在Rt△BDC中,BD=\sqrt {BC^2-CD^2}=16\ \mathrm {\ \mathrm {km}}$
$∴一辆货车从点C处经过点D到点B处的路程=CD+BD=12+16=28(\ \mathrm {\ \mathrm {km}})$