$解: 由题意, 得 A B=20 \mathrm{n}\ \mathrm {mile}, A C=48 \times \frac{20}{60}= 16(\mathrm{n}\ \mathrm {mile} ), B C=36 \times \frac{20}{60}=12(\mathrm{n}\ \mathrm {mile} )$
$\therefore 易得 A C^{2}+B C^{2}= A B^{2}$
$\therefore \triangle A B C 为直角三角形, 且 \angle C=90^{\circ}$
$\because 乙巡逻艇的 航向为北偏西 37^{\circ}$
$\therefore \angle C B A=90^{\circ}-37^{\circ}=53^{\circ}$
$\therefore \angle C A B= 180^{\circ}-\angle C-\angle C B A=37^{\circ}$
$\because 90^{\circ}-37^{\circ}=53^{\circ}$
$\therefore 甲巡逻艇沿 北偏东 53^{\circ} 方向航行$