$解: (1)∵抛物线与x轴相交于两点(-3,0)、(5,0) $
$设抛物线表达式为y=a(x-5)(x+3)$
$将点(0,-3)代入抛物线表达式得-3= a(0- 5)(0+3)$
$a=\frac {1}{5}$
$∴y=\frac {1}{5}(x-5)(x +3)$
$∴y=\frac {1}{5}x²-\frac {2}{5}x-3$
$(2)∵抛物线的顶点坐标为(1,-3)$
$∴设抛物线的表达式为y= a(x-1)²- 3 $
$将点(0,1)代入表达式得a=4 $
$∴抛物线表达式为y= 4(x- 1)²-3$