$解:(1)如图所示$
$(2)∠A=∠A,△ABC∽△A'B'C'$
$在AB上截取AB''= A'B',过点B''作B''C''//BC,交AC于点C''$
$在△ABC和△AB''C''中$
$∵B''C''//BC$
$∴△ABC \sim △AB''C''$
$∴\frac {AB}{AB''}=\frac {BC}{B''C''}=\frac {CA}{C''A}$
$∵\frac {AB}{A'B'}=\frac {BC}{B'C'}=\frac {CA}{C'A'},AB''= A'B'$
$∴B''C''= B'C',C''A= C'A',△AB''C''≌△A'B'C'$
$∴△ABC \sim △A'B'C'$
$(3)假设AB>A'B',在AB上截取AB''= A'B',过点B''作B''C''//BC,交AC于点C''$
$在△ABC和△AB''C''中$
$∵B''C''//BC$
$∴△ABC \sim △AB''C''$
$∴\frac {AB}{AB''}=\frac {BC}{B''C''}=\frac {CA}{C''A}$
$∵\frac {AB}{A'B'}=\frac {BC}{B'C'}=\frac {CA}{C'A'},AB''= A'B'$
$∴B''C''= B'C',C''A= C'A',△AB''C''≌△A'B'C'$
$∴△ABC \sim △A'B'C'$