$解:\frac {BG'}{G'E}=\frac {AG'}{G'D}=2,点G 与G'重合$
$连接ED$
$∵BE、AD是△ABC的中线$
$∴DE是△ABC的中位线$
$∴DE//AB,DE : AB=1 : 2$
$∵DE//AB$
$∴∠EDG'=∠G'AB,∠DEG'=∠G'BA$
$∴△EDG'∽△BAG'$
$∴\frac {BG'}{G'E}=\frac {AG'}{G'D}=2$
$∴G'E=\frac {1}{2}BG'$
$∴点G 与点G'重合$