$解:(1)M(12,0),P(6,6)$
$ (2)设二次函数表达式为y=a(x-6)^2+6$
$∵函数y=a(x-6)^2+6的图像经过点(0,0)$
$∴0=a(0-6)^2+6,即a=- \frac {1}{6}$
$∴抛物线相应的函数表达式为y=-\frac {1}{6} (x-6)^2+6,$
$即y=-\frac 16x^2+2x $
$(3)设A(m,0),则B(12-m,0),C(12-m,- \frac {1}{6}\ \mathrm {m^2}+2\ \mathrm {m}),$
$D(m,- \frac {1}{6}\ \mathrm {m^2} +2\ \mathrm {m})$
$∴“支撑架”总长AD+DC+CB= (- \frac {1}{6}\ \mathrm {m^2}+2m)+(12-2m) +(- \frac {1}{6}\ \mathrm {m^2}+2m )$
$ =- \frac {1}{3}\ \mathrm {m^2}+2m+12=- \frac {1}{3} (m-3)^2+15$
∵此二次函数的图像开口向下
$∴当m=3\ \mathrm {m} 时,AD+DC+CB有最大值为15\ \mathrm {m}$