$解:(1)∵cos 36°50'=0.8004,cos 37°=0.7986,cos A=0.8$
$∴36°50'\lt ∠A\lt 37°,98°\lt ∠ C\lt 98°10'$
$∴△ABC是钝角三角形$
$ (2) 如图,BD是边AC上的高,BD⊥AC,BD=3,过点C作CE⊥AB,垂足为E$
$在Rt △ABD中,cos A=\frac {AD}{AB}=\frac {4}{5}$
$设AD=4k,AB=5k$
$∴3^2+(4k)^2=(5k)^2,k=1$
$∴AB=5,AD=4$
$在Rt△ACE中,cosA=\frac {AE}{AC}=\frac {4}{5}$
$设AE=4a,AC=5a$
$∴CE=\sqrt{(5a)^2-(4a)^2}=3a$
$又∵∠CBE=45°,∠BEC=90°$
$∴BE=CE=3a$
$∵BE+AE=AB$
$∴3a+4a=5$
$∴a=\frac {5}{7}$
$∴BE=CE=\frac {15}{7}$
$∴BC=\frac {BE}{cos_{45}°}=\frac {15}{7} × \frac {2}{\sqrt 2}=\frac {15\sqrt{2}}{7}$