$解:过点C作CD⊥AB,垂足为点D$
$设CD=x\ \mathrm {cm}$
$在Rt△ACD中,∵CD=x\ \mathrm {cm},∠A=60°$
$∴AD=\frac {CD}{\sqrt 3}=\frac {\sqrt 3}3x\ \mathrm {cm}$
$在Rt△BCD中,∵∠B=45°$
$∴BD=CD=x\ \mathrm {cm}$
$∵AB=8\ \mathrm {cm}$
$∴\frac {\sqrt 3}3x+x=8$
$解得x=12-4\sqrt 3$
$∴CD=(12-4\sqrt 3)\ \mathrm {cm}$
$∴S_{△ABC}=\frac 12×AB×CD=48-16\sqrt 3≈20.29\ \mathrm {cm^2}$