$解:由矩形OABC,PQ⊥BP$
$可得∠QPO=90°-∠BPA=∠PBA$
$∴△QOP∽△PAB$
$∴\frac {OQ}{OP}=\frac {PA}{AB},即\frac {OQ}{OP}=\frac {a-OP}b$
$得OQ=-\frac {OP^2}b+\frac {a}bOP=-\frac 1{b}(OP-\frac a{2})^2+\frac {a^2}{4b}$
$∴当OP=\frac a{2}时,OQ长度最大,最大长度是\frac {a^2}{4b}$