电子课本网 第82页

第82页

信息发布者:
C
B
x-2
​$\frac {1}{x-2}$​
​$\frac {a}{a-b}$​
​$=\frac {a²}{b²c} · (-\frac {bc²}{2a}) · \frac {b}{a}$​
​$=-\frac {c}{2}$​
​$=\frac {m-3}{2(m-2)}÷\frac {(m+2)(m-2)-5}{m-2}$​
​$=\frac {m-3}{2(m-2)}·\frac {m-2}{(m+3)(m-3)}$​
​$=\frac {1}{2m+6}$​
​$=(\frac {a}{a}-\frac {1}{a})÷(\frac {a^2}{a}-\frac {1}{a})$​
​$=\frac {a-1}{a}·\frac {a}{a^2-1}$​
​$=\frac {a-1}{(a-1)(a+1)}$​
​$=\frac {1}{a+1}$​
​$=\frac {a+1}{a-1}-\frac {a}{(a-1)^2}·a$​
​$=\frac {(a+1)(a-1)-a^2}{(a-1)^2}$​
​$=-\frac {1}{(a-1)^2}$​
解:原式​$=1-\frac {a-b}{a-2b}·\frac {(a-2b)^2}{(a+b)(a-b)}=1-\frac {a-2b}{a+b}=\frac {a+b}{a+b}-\frac {a-2b}{a+b}=\frac {3b}{a+b}$​
当​$\frac {a}{b}=\frac {1}{3}$​,即​$b=3a$​时,
原式​$=\frac {9a}{a+3a}=\frac {9a}{4a}=\frac {9}{4}$​