解:$(1)$由$a+b=ab,$得到$a=b(a-1),$即$b=\frac {a}{a-1}$
当$a=2$时,$b=2;$当$a=3$时,$b=\frac 32$
$(2)$若$a=2,$$b=2,$$\frac {b}a+\frac {a}b=1+1=2,$$ab=4$
则$\frac {b}a+\frac {a}b$比$ab{小}2$
$(3)$将$b=\frac {a}{a-1}$代入$\frac {b}{a}+\frac {a}{b},$
得$\frac {\frac {a}{a-1}}{a}+\frac {a}{\frac a{a-1}}=\frac 1{a-1}+ a-1$
将$b=\frac {a}{a-1}$代入$ab,$得$a· \frac {a}{a-1}=\frac {a^2}{a-1}$
∵$ab-(\frac {b}{a}+\frac {a}{b})=\frac {a^2}{a-1}-\frac 1{a-1}-a+1=\frac {a^2-1}{a-1}-a+1=a+1-a+1=2$
∴$\frac {b}{a}+\frac {a}{b}$比$ab{小}2$