电子课本网 第83页

第83页

信息发布者:
B
D
​$\frac {2}{3}$​
​$-\frac {1}{x}$​
​$±\frac {1}{2}$​
解:原式​$= \frac {3x^2+3xy+x^2-xy}{(x-y)(x+y)}· \frac {(x-y)(x+y)}{x}=\frac {2x(2x+y)}{(x-y)(x+y)}· \frac {(x-y)(x+y)}{x}=2(2x+y)$​
∵​$2x+y-3=0,$​∴​$2x+y=3$​
∴原式​$=2×3=6$​
解:原式​$=(\frac {a+1}{a-2}-\frac {a-2}{a-2})÷\frac {a(a-2)}{(a-2)^2}=\frac {a+1-(a-2)}{a-2}· \frac {(a-2)^2}{a(a-2)}=\frac {a+1-a+2}{a-2}· \frac {(a-2)^2}{a(a-2)}$​
​$=\frac 3{a-2}· \frac {(a-2)^2}{a(a-2)}=\frac 3{a}$​
​$ $​当​$a=0,$​​$a=2$​时,原式没有意义
∴当​$a=2025$​时,原式​$=\frac 3{2025}=\frac 1{675}$​
解:​$(1)$​由​$a+b=ab,$​得到​$a=b(a-1),$​即​$b=\frac {a}{a-1}$​
当​$a=2$​时,​$b=2;$​当​$a=3$​时,​$b=\frac 32$​
​$(2)$​若​$a=2,$​​$b=2,$​​$\frac {b}a+\frac {a}b=1+1=2,$​​$ab=4$​
则​$\frac {b}a+\frac {a}b$​比​$ab{小}2$​
​$(3)$​将​$b=\frac {a}{a-1}$​代入​$\frac {b}{a}+\frac {a}{b},$​
得​$\frac {\frac {a}{a-1}}{a}+\frac {a}{\frac a{a-1}}=\frac 1{a-1}+ a-1$​
将​$b=\frac {a}{a-1}$​代入​$ab,$​得​$a· \frac {a}{a-1}=\frac {a^2}{a-1}$​
∵​$ab-(\frac {b}{a}+\frac {a}{b})=\frac {a^2}{a-1}-\frac 1{a-1}-a+1=\frac {a^2-1}{a-1}-a+1=a+1-a+1=2$​
∴​$\frac {b}{a}+\frac {a}{b}$​比​$ab{小}2$​