解:∵$x=\frac 1{\sqrt 2+1}=\frac {\sqrt 2-1}{(\sqrt 2+1)(\sqrt 2-1)}=\sqrt 2-1,$
$y=\frac 1{\sqrt 2-1}=\frac {\sqrt 2+1}{(\sqrt 2+1)(\sqrt 2-1)}=\sqrt 2+1$
∴$x+y=\sqrt 2-1+\sqrt 2+1=2\sqrt 2,$$xy=(\sqrt 2-1)(\sqrt 2+1)=2-1=1$
$(1)x^2+y^2=(x+y)^2-2xy=(2\sqrt 2)^2-2×1=8-2=6$
$(2)\frac y{x}+\frac x{y}=\frac {x^2+y^2}{xy}=\frac 61=6$