解:(1)把$M(2,m)$代入$y = x$得$m = 2,$把$M(2,2)$代入$y = -\dfrac{1}{2}x + b$得$2=-\dfrac{1}{2}\times2 + b,$$2=-1 + b,$解得$b = 3。$
对于$y = -\dfrac{1}{2}x + 3,$令$y = 0,$则$0=-\dfrac{1}{2}x + 3,$$\dfrac{1}{2}x = 3,$$x = 6,$所以$A(6,0)。$
(2)对于$y = -\dfrac{1}{2}x + 3,$令$x = 0,$则$y = 3,$所以$B(0,3),$$OB = 3。$
$C\left(a,-\dfrac{1}{2}a + 3\right),$$D(a,a),$$CD=a-\left(-\dfrac{1}{2}a + 3\right)=a+\dfrac{1}{2}a - 3=\dfrac{3}{2}a - 3。$
因为$OB = CD,$所以$\dfrac{3}{2}a - 3=3,$$\dfrac{3}{2}a = 6,$解得$a = 4。$
(3) $OA = 6,$$OD=\sqrt{a^{2}+a^{2}}=\sqrt{2}a,$$AD=\sqrt{(a - 6)^{2}+a^{2}}。$
当$OA = OD$时,$\sqrt{2}a=6,$解得$a = 3\sqrt{2};$
当$OA = AD$时,$(a - 6)^{2}+a^{2}=36,$$a^{2}-12a + 36+a^{2}=36,$$2a^{2}-12a=0,$$a^{2}-6a=0,$$a(a - 6)=0,$因为$a>2,$所以$a = 6;$
当$OD = AD$时,$a^{2}+a^{2}=(a - 6)^{2}+a^{2},$$a^{2}=a^{2}-12a + 36,$$12a = 36,$解得$a = 3。$
综上,$a$的值为$3\sqrt{2}$或$3$或$6。$