电子课本网 第54页

第54页

信息发布者:
C
C
60
相切
证明:如图,连接$OD$、$BD。$
$\because AB$为$\odot O$的直径,
$\therefore \angle ADB = 90^{\circ},$即$BD\perp AC。$
$\because AB = CB,$
$\therefore AD = CD。$
$\because OA = OB,$
$\therefore OD$为$\triangle ABC$的中位线,
$\therefore OD// BC,$
$\therefore \angle ODE=\angle DEC。$
$\because DE\perp BC,$
$\therefore \angle DEC = 90^{\circ},$
$\therefore \angle ODE = 90^{\circ},$即$DF\perp OD。$
$\because OD$为$\odot O$的半径,
$\therefore DF$为$\odot O$的切线。

D