证明:$(1)$∵$PA$与$\odot O$相切于点$A,$
∴$PA\perp OA.$
∵$PO$平分$∠APD,$$OB\perp PD,$
∴$OB = OA,$
∴$PB$是$\odot O$的切线$.$
$(2)$根据题意,得$OA = OB = 4$
.∵$OC = 5,$
∴$AC = OA + OC = 4 + 5 = 9.$
∵$PA\perp OA,$$OB\perp PD,$
∴$∠PAO=∠PBO=∠OBC = 90°,$
∴在$Rt\triangle OBC$中,$BC=\sqrt {OC^2-OB^2} = 3.$
在$Rt\triangle PAO$和$Rt\triangle PBO$中,
$OA = OB,$
$OP = OP,$
∴$Rt\triangle PAO\cong Rt\triangle PBO,$
∴$PA = PB.$
∵在$Rt\triangle PAC$中,$PA^2+AC^2=PC^2,$
∴$PA^2+9^2=(PA + 3)^2,$
$ \begin {aligned}PA^2+81&=PA^2+6PA + 9\\6PA&=72\\PA&=12\end {aligned}$
∴$PA$的长是$12.$