证明:$(1)$在正五边形$ABCDE$中,$AB = BC,$$∠ABM=∠C。$
$ $在$\triangle ABM$和$\triangle BCN$中,
$ \begin {cases}AB = BC \\∠ABM=∠C \\BM = CN\end {cases}$
∴$\triangle ABM\cong \triangle BCN(\mathrm {SAS})。$
$ (2) $解:∵$\triangle ABM\cong \triangle BCN,$
∴$∠BAM=∠CBN。$
∵$∠BAM+∠ABP=∠APN,$
∴$∠APN=∠CBN+∠ABP=∠ABC。$
∵正五边形内角和为$(5 - 2)×180°=540°,$
∴$∠ABC=\frac {(5 - 2)×180°}{5}=108°,$即$∠APN = 108°。$