电子课本网 第7页

第7页

信息发布者:
A
D
B
$\frac{3}{2}$
$\frac{\sqrt{3}}{2}$
$x_1 = 1,x_2=\frac{1}{2}$
$>$
解:对于方程$2x^{2}+x - 2 = 0,$
首先将二次项系数化为$1,$得$x^{2}+\frac{1}{2}x - 1 = 0,$
移项得$x^{2}+\frac{1}{2}x=1,$
配方:$x^{2}+\frac{1}{2}x + (\frac{1}{4})^{2}=1+(\frac{1}{4})^{2},$
即$(x + \frac{1}{4})^{2}=\frac{17}{16},$
解得$x_1=-\frac{1}{4}+\frac{\sqrt{17}}{4},x_2=-\frac{1}{4}-\frac{\sqrt{17}}{4}。$
解:对于方程$2y^{2}-\sqrt{2}y - 2 = 0,$
将二次项系数化为$1,$得$y^{2}-\frac{\sqrt{2}}{2}y - 1 = 0,$
移项得$y^{2}-\frac{\sqrt{2}}{2}y=1,$
配方:$y^{2}-\frac{\sqrt{2}}{2}y+(\frac{\sqrt{2}}{4})^{2}=1 + (\frac{\sqrt{2}}{4})^{2},$
即$(y-\frac{\sqrt{2}}{4})^{2}=\frac{9}{8},$
$y-\frac{\sqrt{2}}{4}=\pm\frac{3\sqrt{2}}{4},$
解得$y_1=\sqrt{2},y_2=-\frac{\sqrt{2}}{2}。$
解:对于方程$-3t^{2}+2t + 5 = 0,$
将二次项系数化为$1,$得$t^{2}-\frac{2}{3}t-\frac{5}{3}=0,$
移项得$t^{2}-\frac{2}{3}t=\frac{5}{3},$
配方:$t^{2}-\frac{2}{3}t+(\frac{1}{3})^{2}=\frac{5}{3}+(\frac{1}{3})^{2},$
即$(t - \frac{1}{3})^{2}=\frac{16}{9},$
$t-\frac{1}{3}=\pm\frac{4}{3},$
解得$t_1=\frac{5}{3},t_2=-1。$
解: (1) 因为方程$(a + 3)x^{2}+3x + a^{2}-9 = 0$是一元二次方程,所以$a + 3\neq0,$解得$a\neq - 3。$
因为该方程有一个根为$0,$所以$a^{2}-9 = 0,$解得$a=\pm3,$所以实数$a$的值为$3。$
(2) 把$a = 1$代入$(a + 3)x^{2}+3x + a^{2}-9 = 0,$得$4x^{2}+3x - 8 = 0,$
所以$4x^{2}+3x = 8,$所以$x^{2}+\frac{3}{4}x = 2,$
所以$x^{2}+\frac{3}{4}x+(\frac{3}{8})^{2}=2+(\frac{3}{8})^{2},$
所以$(x+\frac{3}{8})^{2}=\frac{137}{64},$
所以$x+\frac{3}{8}=\pm\frac{\sqrt{137}}{8},$
所以$x_1=\frac{\sqrt{137}-3}{8},x_2=-\frac{\sqrt{137}+3}{8}。$
A