解:因为$a = \frac{17}{19}x + 2025,$$b = \frac{17}{19}x + 2023,$$c = \frac{17}{19}x + 2024,$所以$a - b = 2,$$a - c = 1,$$c - b = 1,$所以$a^{2}+b^{2}+c^{2}-ab - ac - bc=(\frac{a^{2}}{2}-ab+\frac{b^{2}}{2})+(\frac{a^{2}}{2}-ac+\frac{c^{2}}{2})+(\frac{c^{2}}{2}-bc+\frac{b^{2}}{2})=\frac{(a - b)^{2}}{2}+\frac{(a - c)^{2}}{2}+\frac{(c - b)^{2}}{2}=\frac{2^{2}}{2}+\frac{1^{2}}{2}+\frac{1^{2}}{2}=3。$故代数式$a^{2}+b^{2}+c^{2}-ab - ac - bc$的值与$x$的取值无关,且$a^{2}+b^{2}+c^{2}-ab - ac - bc$的值是3。