解: (1)由题意,得$AP = 4t cm,$$CQ = t cm。$
因为四边形$ABCD$是矩形,所以$AB = DC = 14 cm,$$BC = AD = 6 cm,$
所以$BP = AB - AP=(14 - 4t)cm,$
所以$S_{梯形BCQP}=\frac{1}{2}(CQ + BP)\cdot BC=\frac{1}{2}(t + 14 - 4t)\times6=(42 - 9t)cm^{2}。$
因为$4t\leqslant14,$所以$t\leqslant\frac{7}{2}。$
因为$S_{矩形ABCD}=DC\cdot AD = 84 cm^{2},$
所以当$PQ$将矩形$ABCD$的面积分成$2:5$两部分时,分类讨论如下:
①若$S_{梯形ADQP}:S_{梯形BCQP}=2:5,$则$S_{梯形BCQP}=\frac{5}{7}S_{矩形ABCD}=60 cm^{2},$
所以$42 - 9t = 60,$解得$t=-2,$不合题意,舍去;
②若$S_{梯形BCQP}:S_{梯形ADQP}=2:5,$则$S_{梯形BCQP}=\frac{2}{7}S_{矩形ABCD}=24 cm^{2},$
所以$42 - 9t = 24,$解得$t = 2。$
综上所述,当$t$的值为$2$时,$PQ$将矩形$ABCD$的面积分成$2:5$两部分。
(2)过点$Q$作$QE\perp AB$于点$E,$则$\angle BEQ=\angle PEQ = 90^{\circ}。$
因为四边形$ABCD$是矩形,所以$\angle B=\angle C = 90^{\circ},$所以四边形$BCQE$是矩形,
所以$QE = BC = 6 cm,$$BE = CQ = t cm。$
因为$BP=(14 - 4t)cm,$所以$PE=\vert BP - BE\vert=\vert14 - 5t\vert cm。$
因为$PE^{2}+QE^{2}=PQ^{2},$$PQ = 10 cm,$所以$\vert14 - 5t\vert^{2}+6^{2}=10^{2},$
$(14 - 5t)^{2}=100 - 36 = 64,$
$14 - 5t=\pm8,$
当$14 - 5t = 8$时,$5t = 6,$解得$t_1=\frac{6}{5};$
当$14 - 5t=-8$时,$5t = 22,$解得$t_2=\frac{22}{5}$(不合题意,舍去)。
故当$t$的值为$\frac{6}{5}$时,$P,$$Q$两点之间的距离为$10 cm。$