电子课本网 第27页

第27页

信息发布者:
A
6
解: (1)把$x = 3$代入$(a - 1)x^{2}-4x - 1 + 2a = 0,$得$9(a - 1)-12 - 1 + 2a = 0,$
$\begin{aligned}9a-9-12 - 1 + 2a&=0\\11a-22&=0\\11a&=22\\a&=2\end{aligned}$
原方程可化为$x^{2}-4x + 3 = 0,$因式分解得$(x - 1)(x - 3)=0,$解得$x_{1}=3,$$x_{2}=1。$故$a$的值为$2,$方程的另一个根为$1。$
(2)分类讨论如下:
① 若该三角形的三边都相等,则三边长都为$1$或$3,$所以周长为$1\times3 = 3$或$3\times3 = 9;$
② 若该三角形有两边相等,则三边长分别为$1,$$3,$$3,$所以周长为$1 + 3+3 = 7。$
综上所述,该三角形的周长为$3$或$9$或$7。$
D
B
解: (1)$8(x + 1)^{2}=27,$则$(x + 1)^{2}=\frac{27}{8},$$x + 1=\pm\sqrt{\frac{27}{8}}=\pm\frac{3\sqrt{6}}{4},$解得$x_{1}=-1+\frac{3\sqrt{6}}{4},$$x_{2}=-1-\frac{3\sqrt{6}}{4}。$
解: (2)$2x^{2}-3x + 1 = 0,$移项得$2x^{2}-3x=-1,$两边同时除以$2$得$x^{2}-\frac{3}{2}x=-\frac{1}{2},$配方:$x^{2}-\frac{3}{2}x+\left(\frac{3}{4}\right)^{2}=-\frac{1}{2}+\left(\frac{3}{4}\right)^{2},$即$\left(x-\frac{3}{4}\right)^{2}=\frac{9}{16}-\frac{8}{16}=\frac{1}{16},$则$x-\frac{3}{4}=\pm\frac{1}{4},$解得$x_{1}=1,$$x_{2}=\frac{1}{2}。$
解: (3)对于$4x^{2}-4\sqrt{3}x - 1 = 0,$其中$a = 4,$$b=-4\sqrt{3},$$c = - 1,$$\Delta=b^{2}-4ac=(-4\sqrt{3})^{2}-4\times4\times(-1)=48 + 16 = 64,$$x=\frac{-b\pm\sqrt{\Delta}}{2a}=\frac{4\sqrt{3}\pm\sqrt{64}}{2\times4}=\frac{4\sqrt{3}\pm8}{8}=\frac{\sqrt{3}\pm2}{2},$所以$x_{1}=\frac{\sqrt{3}+2}{2},$$x_{2}=\frac{\sqrt{3}-2}{2}。$
解: (4)$7(x - 5)=9x^{2}-45x,$变形为$7(x - 5)=9x(x - 5),$移项得$7(x - 5)-9x(x - 5)=0,$即$(x - 5)(7 - 9x)=0,$则$x - 5 = 0$或$7 - 9x = 0,$解得$x_{1}=5,$$x_{2}=\frac{7}{9}。$
B
C
$a>9$