电子课本网 第29页

第29页

信息发布者:
解:$ (1)因为矩形纸板ABCD的面积为3600cm^{2},一边长为90cm,所以另一边长为3600\div90 = 40(cm),所以S_{侧}=2[x(90 - 2x)+x(40 - 2x)]=(-8x^{2}+260x)(cm^{2})。由题意,得40-2x>0,解得x<20,所以x的取值范围为0<x<20。因为S_{侧}=1100cm^{2},所以-8x^{2}+260x = 1100,即2x^{2}-65x + 275 = 0,$
$ \begin{aligned} x&=\frac{65\pm\sqrt{(-65)^{2}-4\times2\times275}}{2\times2} \\ &=\frac{65\pm\sqrt{4225 - 2200}}{4} \\ &=\frac{65\pm\sqrt{2025}}{4} \\ &=\frac{65\pm45}{4} \\ \end{aligned}$
$ 解得x_{1}=5,x_{2}=27.5(不合题意,舍去)。故x的值为5。$
$ (2)因为EH:EF = 7:2,所以设EF = 2m cm,则EH = 7m cm,所以S_{侧}=2(7mx + 2mx)=18mx(cm^{2}),S_{底}=7m\cdot2m = 14m^{2}(cm^{2})。因为S_{侧}:S_{底}=9:7,所以18mx:14m^{2}=9:7,所以m = x,所以AD = 7x + 2x = 9x(cm),AB = 2x + 2x = 4x(cm),所以S_{矩形ABCD}=AB×AD = 36x^{2}cm^{2}。因为S_{矩形ABCD}=3600cm^{2},所以36x^{2}=3600,解得x = 10(负值舍去)。故x的值为10。$
解: (1)设每只乳鸽的售价应定为$x$元。由题意,得$1000+50\times\frac{30 - x}{0.5}=1500,$
$\begin{aligned}1000+100\times(30 - x)&=1500\\1000+3000-100x&=1500\\-100x&=1500 - 4000\\-100x&=-2500\\x&=25\end{aligned}$
故每只乳鸽的售价应定为$25$元。
(2)由题意,得$25\times[\frac{3}{7}\times1500(1 + a\%)]+25(1+\frac{2}{5}a\%)\times[(1-\frac{3}{7})\times1500(1 + a\%)]=37500 + 495a。$
设$a\% = t,$则$25\times[\frac{3}{7}\times1500(1 + t)]+25(1+\frac{2}{5}t)\times[(1-\frac{3}{7})\times1500(1 + t)]=37500 + 495\times100t,$
整理得$a^{2}-40a = 0,$$a(a - 40)=0,$解得$a_{1}=40,$$a_{2}=0$(不合题意,舍去)。故$a$的值为$40。$