解:$ (1)因为矩形纸板ABCD的面积为3600cm^{2},一边长为90cm,所以另一边长为3600\div90 = 40(cm),所以S_{侧}=2[x(90 - 2x)+x(40 - 2x)]=(-8x^{2}+260x)(cm^{2})。由题意,得40-2x>0,解得x<20,所以x的取值范围为0<x<20。因为S_{侧}=1100cm^{2},所以-8x^{2}+260x = 1100,即2x^{2}-65x + 275 = 0,$
$ \begin{aligned} x&=\frac{65\pm\sqrt{(-65)^{2}-4\times2\times275}}{2\times2} \\ &=\frac{65\pm\sqrt{4225 - 2200}}{4} \\ &=\frac{65\pm\sqrt{2025}}{4} \\ &=\frac{65\pm45}{4} \\ \end{aligned}$
$ 解得x_{1}=5,x_{2}=27.5(不合题意,舍去)。故x的值为5。$
$ (2)因为EH:EF = 7:2,所以设EF = 2m cm,则EH = 7m cm,所以S_{侧}=2(7mx + 2mx)=18mx(cm^{2}),S_{底}=7m\cdot2m = 14m^{2}(cm^{2})。因为S_{侧}:S_{底}=9:7,所以18mx:14m^{2}=9:7,所以m = x,所以AD = 7x + 2x = 9x(cm),AB = 2x + 2x = 4x(cm),所以S_{矩形ABCD}=AB×AD = 36x^{2}cm^{2}。因为S_{矩形ABCD}=3600cm^{2},所以36x^{2}=3600,解得x = 10(负值舍去)。故x的值为10。$