解:连接$OP.$ 由题意,得$OP = \sqrt{OC^{2}+PC^{2}},$$r = 10\mathrm{cm},$$OC = 6\mathrm{cm}.$
(1)若$PC = 4\mathrm{cm},$则$OP=\sqrt{6^{2} + 4^{2}}=\sqrt{36 + 16}=\sqrt{52}=2\sqrt{13}\mathrm{cm}<r,$所以点$P$在⊙O内.
(2)若$PC = 8\mathrm{cm},$则$OP=\sqrt{6^{2}+8^{2}}=\sqrt{36 + 64}=\sqrt{100}=10\mathrm{cm}=r,$所以点$P$在⊙O上.
(3)若$PC = 10\mathrm{cm},$则$OP=\sqrt{6^{2}+10^{2}}=\sqrt{36 + 100}=\sqrt{136}=2\sqrt{34}\mathrm{cm}>r,$所以点$P$在⊙O外.