解: 当点$B$落在半径为$2$的$\odot A$上时,$4 - 2\leqslant m\leqslant4 + 2,$解得$2\leqslant m\leqslant6。$分类讨论如下:① 当$4\leqslant m\leqslant6$时,线段$BC$与线段$OA$的距离等于$\odot A$的半径,即$d = 2;$② 如图,当$2\leqslant m\lt4$时,过点$B$作$BN\perp x$轴于点$N,$则$\angle ANB = 90^{\circ}。$因为$A(4,0),$$B(m,n),$所以$OA = 4,$$ON = m,$所以$AN = OA - ON = 4 - m。$因为$\odot A$的半径为$2,$所以$AB = 2,$所以$BN = \sqrt{AB^{2}-AN^{2}}=\sqrt{-m^{2}+8m - 12}。$由图可知此时线段$BC$与线段$OA$的距离等于线段$BN$的长,即$d = \sqrt{-m^{2}+8m - 12}。$综上所述,$d$关于$m$的函数表达式为$d = \begin{cases}\sqrt{-m^{2}+8m - 12}(2\leqslant m\lt4)\\2(4\leqslant m\leqslant6)\end{cases}。$