(1)解:连接$AD,$$BE。$因为$AB$为$\odot O$的直径,所以$\angle ADB = \angle AEB = 90^{\circ},$所以$AD \perp BC,$$BE \perp AC。$
因为$AB = AC = 6,$所以$BD = CD = 2,$所以$BC = BD + CD = 4。$
因为$AE^{2}+BE^{2}=AB^{2},$$CE^{2}+BE^{2}=BC^{2},$所以$AB^{2}-AE^{2}=BC^{2}-CE^{2}。$
设$CE = x,$则$AE = AC - CE = 6 - x,$所以$6^{2}-(6 - x)^{2}=4^{2}-x^{2},$
$36-(36 - 12x + x^{2}) = 16 - x^{2},$
$36 - 36 + 12x - x^{2}=16 - x^{2},$
$12x = 16,$
解得$x = \frac{4}{3}。$故$CE$的长为$\frac{4}{3}。$
(2)$\angle BAC = 2\angle CBE。$
证明:连接$AD。$因为$AB$为$\odot O$的直径,所以$\angle ADB = 90^{\circ},$所以$AD \perp BC。$
因为$AB = AC,$所以$\angle BAC = 2\angle CAD。$
因为$\angle CBE = \angle CAD,$所以$\angle BAC = 2\angle CBE。$
(3)相同。
证明:连接$AD。$因为$AB$为$\odot O$的直径,所以$\angle ADB = 90^{\circ},$所以$AD \perp BC。$
因为$AB = AC,$所以$\angle BAC = 2\angle CAD。$
因为四边形$AEBD$内接于$\odot O,$所以$\angle EAD + \angle CBE = 180^{\circ}。$
因为$\angle EAD + \angle CAD = 180^{\circ},$所以$\angle CBE = \angle CAD,$所以$\angle BAC = 2\angle CBE。$