电子课本网 第47页

第47页

信息发布者:
$40^{\circ}$
$2\sqrt{3}-2$
D
$3$
(1)证明:因为四边形$ABCD$内接于$\odot O,$所以$\angle ABC + \angle ADC = 180^{\circ}。$
因为$\angle ABC = 60^{\circ},$所以$\angle ADC = 180^{\circ} - \angle ABC = 120^{\circ}。$
因为$DB$平分$\angle ADC,$所以$\angle ADB = \angle CDB = \frac{1}{2}\angle ADC = 60^{\circ},$所以$\angle ACB = \angle ADB = 60^{\circ},$$\angle BAC = \angle CDB = 60^{\circ},$所以$\angle ABC = \angle ACB = \angle BAC,$所以$\triangle ABC$是等边三角形。
(2)解:过点$A$作$AE\perp CD,$交$CD$的延长线于点$E,$过点$B$作$BF\perp AC$于点$F,$则$\angle AED = \angle AFB = 90^{\circ}。$
因为$\angle ADC = 120^{\circ},$所以$\angle ADE = 180^{\circ} - \angle ADC = 60^{\circ},$所以$\angle DAE = 90^{\circ} - \angle ADE = 30^{\circ},$所以$DE = \frac{1}{2}AD。$
因为$AD = 2,$所以$DE = 1,$所以$AE = \sqrt{AD^{2}-DE^{2}}=\sqrt{3}。$
因为$CD = 4,$所以$S_{\triangle ACD} = \frac{1}{2}CD\cdot AE = 2\sqrt{3},$$CE = CD + DE = 5,$所以$AC = \sqrt{AE^{2}+CE^{2}} = 2\sqrt{7}。$
因为$\triangle ABC$是等边三角形,所以$AB = AC = 2\sqrt{7},$$AF = \frac{1}{2}AC = \sqrt{7},$所以$BF = \sqrt{AB^{2}-AF^{2}}=\sqrt{21},$所以$S_{\triangle ABC} = \frac{1}{2}AC\cdot BF = 7\sqrt{3},$所以$S_{四边形ABCD} = S_{\triangle ACD} + S_{\triangle ABC} = 9\sqrt{3}。$
(1)解:连接$AD,$$BE。$因为$AB$为$\odot O$的直径,所以$\angle ADB = \angle AEB = 90^{\circ},$所以$AD \perp BC,$$BE \perp AC。$
因为$AB = AC = 6,$所以$BD = CD = 2,$所以$BC = BD + CD = 4。$
因为$AE^{2}+BE^{2}=AB^{2},$$CE^{2}+BE^{2}=BC^{2},$所以$AB^{2}-AE^{2}=BC^{2}-CE^{2}。$
设$CE = x,$则$AE = AC - CE = 6 - x,$所以$6^{2}-(6 - x)^{2}=4^{2}-x^{2},$
$36-(36 - 12x + x^{2}) = 16 - x^{2},$
$36 - 36 + 12x - x^{2}=16 - x^{2},$
$12x = 16,$
解得$x = \frac{4}{3}。$故$CE$的长为$\frac{4}{3}。$
(2)$\angle BAC = 2\angle CBE。$
证明:连接$AD。$因为$AB$为$\odot O$的直径,所以$\angle ADB = 90^{\circ},$所以$AD \perp BC。$
因为$AB = AC,$所以$\angle BAC = 2\angle CAD。$
因为$\angle CBE = \angle CAD,$所以$\angle BAC = 2\angle CBE。$
(3)相同。
证明:连接$AD。$因为$AB$为$\odot O$的直径,所以$\angle ADB = 90^{\circ},$所以$AD \perp BC。$
因为$AB = AC,$所以$\angle BAC = 2\angle CAD。$
因为四边形$AEBD$内接于$\odot O,$所以$\angle EAD + \angle CBE = 180^{\circ}。$
因为$\angle EAD + \angle CAD = 180^{\circ},$所以$\angle CBE = \angle CAD,$所以$\angle BAC = 2\angle CBE。$