证明: (1)连接OD.因为AB = AC,所以∠OBD = ∠C.因为OB = OD,所以∠OBD = ∠ODB,所以∠ODB = ∠C,所以OD∥AC.因为DE⊥AC,所以OD⊥DE.因为OD是⊙O的半径,所以PE是⊙O的切线.
(2)连接AD.因为⊙O的半径为6,所以AB = 2×6 = 12.因为DE⊥AC,所以∠AED = ∠CED = 90°.因为∠P = 30°,所以∠BAC = 90° - ∠P = 60°.又AB = AC,所以△ABC是等边三角形,所以∠C = 60°,BC = AB = 12,所以∠CDE = 90° - ∠C = 30°,所以$CE=\frac{1}{2}CD.$因为AB是⊙O的直径,所以∠ADB = 90°,所以AD⊥BC,所以$CD=\frac{1}{2}BC = 6,$所以CE = 3.