电子课本网 第68页

第68页

信息发布者:
$\pi$
$\frac{9}{4}$
解:如图,连接$BE,$$DF,$$EF,$过点$P$作$PH\perp AB$于点$H,$则$\angle BHP = \angle AHP = 90^{\circ}。$
因为四边形$ABCD$是边长为$3\sqrt{2}$的正方形,所以$AB = 3\sqrt{2},$$\angle ABP = \angle ADP = 45^{\circ},$所以$\angle BPH = 90^{\circ}-\angle ABP = 45^{\circ},$所以$\angle ABP = \angle BPH,$所以$BH = PH。$
设$BH = PH = x,$则$BP = \sqrt{BH^{2}+PH^{2}}=\sqrt{2}x。$又$BP = 2,$所以$\sqrt{2}x = 2,$解得$x = \sqrt{2},$所以$BH = PH = \sqrt{2},$所以$AH = AB - BH = 2\sqrt{2},$所以$AP = \sqrt{AH^{2}+PH^{2}}=\sqrt{10}。$
因为$E,$$F$分别是$\triangle APB$和$\triangle APD$的外心,所以$\angle AEP = 2\angle ABP = 90^{\circ},$$\angle AFP = 2\angle ADP = 90^{\circ},$$EA = EP,$$FA = FP,$所以$\angle EAP = \angle EPA = \frac{1}{2}(180^{\circ}-\angle AEP)=45^{\circ},$$\angle FAP = \angle FPA = \frac{1}{2}(180^{\circ}-\angle AFP)=45^{\circ},$所以$\angle EAF = \angle EAP + \angle FAP = 90^{\circ},$所以四边形$AEPF$是正方形,所以$EF\perp AP,$$EF = AP = \sqrt{10},$所以$S_{正方形AEPF}=\frac{1}{2}EF\cdot AP = 5。$故四边形$AEPF$的面积为$5。$
解:如图,连接$OA,$$OM,$$ON。$
因为半圆分别与$AB,$$AC$相切于点$M,$$N,$所以$AM = AN,$$OM\perp AB,$$ON\perp AC,$所以$\angle OMA = \angle ONA = 90^{\circ}。$
因为$\angle BAC = 120^{\circ},$所以$\angle MON = 360^{\circ}-\angle BAC-\angle OMA-\angle ONA = 60^{\circ}。$
设半圆的半径为$r。$因为$\overset{\frown}{MN}$的长为$\pi,$所以$\frac{60\pi r}{180}=\pi,$解得$r = 3,$所以$OM = ON = 3。$
在$Rt\triangle OAM$和$Rt\triangle OAN$中,$\begin{cases}OA = OA \\ OM = ON\end{cases},$所以$Rt\triangle OAM\cong Rt\triangle OAN,$所以$\angle AOM = \angle AON = \frac{1}{2}\angle MON = 30^{\circ},$所以$AM = AN = \frac{1}{2}OA。$
设$AM = AN = x,$则$OA = 2x,$所以$OM = \sqrt{OA^{2}-AM^{2}}=\sqrt{3}x,$所以$\sqrt{3}x = 3,$解得$x = \sqrt{3},$所以$AM = AN = \sqrt{3}。$
因为$AB + AC = 16,$所以$BM + CN = AB + AC - AM - AN = 16 - 2\sqrt{3},$所以$S_{\triangle OBM}+S_{\triangle OCN}=\frac{1}{2}BM\cdot OM+\frac{1}{2}CN\cdot ON=\frac{1}{2}(BM + CN)\cdot OM = 24 - 3\sqrt{3}。$
因为$\angle MOE+\angle NOF = 180^{\circ}-\angle MON = 120^{\circ},$所以$S_{扇形OEM}+S_{扇形OFN}=\frac{120\pi\times3^{2}}{360}=3\pi,$所以$S_{阴影}=S_{\triangle OBM}+S_{\triangle OCN}-(S_{扇形OEM}+S_{扇形OFN})=24 - 3\sqrt{3}-3\pi。$故阴影部分的面积为$24 - 3\sqrt{3}-3\pi。$
(1) 解:如图①,连接$OB。$因为$OD\perp BC,$$BC = 4\sqrt{3},$所以$\angle OEB = 90^{\circ},$$BE = \frac{1}{2}BC = 2\sqrt{3}。$
设$\odot O$的半径为$R,$则$OB = OD = R。$因为$DE = 2,$所以$OE = OD - DE = R - 2。$
因为$BE^{2}+OE^{2}=OB^{2},$所以$(2\sqrt{3})^{2}+(R - 2)^{2}=R^{2},$
展开得$12+R^{2}-4R + 4 = R^{2},$
移项得$R^{2}-R^{2}-4R=-12 - 4,$
合并同类项得$-4R=-16,$
解得$R = 4。$故$\odot O$的半径为$4。$
(2) 解:如图②,连接$OB,$$BD,$过点$O$作$OF\perp BD$于点$F,$延长$FO$与$\odot O$交于点$A,$则此时阴影部分的面积最大。
因为$OA = OB = OD = 4,$$DE = 2,$所以$OE = OD - DE = 2,$所以$OE = \frac{1}{2}OB。$
因为$\angle OEB = 90^{\circ},$所以$\angle OBE = 30^{\circ},$所以$\angle BOE = 90^{\circ}-\angle OBE = 60^{\circ},$所以$\triangle OBD$为等边三角形,所以$BD = OB = 4,$所以$BF = DF = \frac{1}{2}BD = 2,$所以$S_{\triangle OAB}=\frac{1}{2}OA\cdot BF = 4,$$S_{\triangle OAD}=\frac{1}{2}OA\cdot DF = 4。$
因为$S_{扇形OBD}=\frac{60\pi\times4^{2}}{360}=\frac{8\pi}{3},$所以$S_{阴影}=S_{扇形OBD}+S_{\triangle OAB}+S_{\triangle OAD}=\frac{8\pi}{3}+8。$故阴影部分面积的最大值为$\frac{8\pi}{3}+8。$