电子课本网 第33页

第33页

信息发布者:
$-1$
$\frac{1}{9}\leq a\leq3$
$2\sqrt{3}$
解:(1)把$A(2,-4)$代入$y = ax^{2},$得$-4 = 4a,$
解得$a = -1。$
(2)设点$C$的横坐标为$m(m\gt0)。$
因为四边形$CDFE$为正方形,所以$CD = CE = 2m,$点$E$的坐标为$(m,-4 + 2m)。$
因为$a = -1,$所以$y = -x^{2}。$
则$-m^{2}=-4 + 2m,$
即$m^{2}+2m - 4 = 0,$
根据求根公式$m=\frac{-2\pm\sqrt{2^{2}-4\times1\times(-4)}}{2\times1}=\frac{-2\pm\sqrt{20}}{2}=-1\pm\sqrt{5},$
因为$m\gt0,$所以$m=-1+\sqrt{5}。$
$CD = 2m=-2 + 2\sqrt{5},$
正方形$CDFE$的周长为$4CD = 4(-2 + 2\sqrt{5})=-8 + 8\sqrt{5}。$
解:(1)将$(1,b)$代入$y = 2x - 3,$得$b = 2\times1 - 3=-1。$
将$(1,-1)$代入$y = ax^{2},$得$-1 = a\cdot1^{2},$
解得$a = -1。$
所以抛物线对应的函数解析式为$y = -x^{2},$顶点坐标为$(0,0),$对称轴为$y$轴。
(2)令$-x^{2}=2x - 3,$
即$x^{2}+2x - 3 = 0,$
因式分解得$(x + 3)(x - 1)=0,$
解得$x_{1}=-3,$$x_{2}=1。$
当$x = -3$时,$y = -9;$当$x = 1$时,$y = -1。$
所以$A(1,-1),$$B(-3,-9)。$
$S_{\triangle AOB}=\frac{1}{2}\times(1 + 9)\times[1 - (-3)]-\frac{1}{2}\times3\times9-\frac{1}{2}\times1\times1$
$=\frac{1}{2}\times10\times4-\frac{27}{2}-\frac{1}{2}$
$=20 - 14=6。$
(3)过点$O$作$OP// AB,$交抛物线于点$P,$连接$AP,$$BP。$此时$S_{\triangle AOB}=S_{\triangle ABP}。$
因为直线$AB$:$y = 2x - 3,$所以直线$OP$对应的函数解析式为$y = 2x。$
联立$\begin{cases}y = 2x\\y = -x^{2}\end{cases},$
将$y = 2x$代入$y = -x^{2}$得$2x=-x^{2},$
即$x^{2}+2x = 0,$
$x(x + 2)=0,$
解得$\begin{cases}x_{1}=0\\y_{1}=0\end{cases},$$\begin{cases}x_{2}=-2\\y_{2}=-4\end{cases}。$
因为点$O$的坐标为$(0,0),$所以点$P$的坐标为$(-2,-4)。$