电子课本网 第35页

第35页

信息发布者:
C
$(2,5)$
$-1$
$-2$
$y = x^{2}+2$
8
解:(1)由题意,得$\begin{cases}k = -2\\a + k = 1\end{cases},$
将$k = -2$代入$a + k = 1$得$a-2 = 1,$解得$a = 3。$
所以此抛物线对应的函数解析式为$y = 3x^{2}-2,$抛物线开口向上,对称轴为$y$轴。
(2)此抛物线对应的函数$y$有最小值,当$x = 0$时,函数$y$取得最小值,为$-2。$
(3)当$x\lt0$时,$y$随$x$的增大而减小。因为$x_1\lt x_2\lt0,$所以$y_1\gt y_2。$
解:(1)把$A(1,b)$代入$y = 2x,$得$b = 2,$所以$A(1,2)。$
把$A(1,2)$代入$y = ax^{2}+3,$得$a + 3 = 2,$解得$a = -1。$
(2)把$B(m,4)$代入$y = 2x,$得$2m = 4,$解得$m = 2,$所以$B(2,4)。$
因为抛物线$y = ax^{2}+3$即$y=-x^{2}+3$的顶点$C$的坐标是$(0,3),$所以$OC = 3。$
$S_{\triangle ABC}=S_{\triangle OBC}-S_{\triangle OAC}=\frac{1}{2}\times3\times2-\frac{1}{2}\times3\times1=\frac{6}{2}-\frac{3}{2}=\frac{3}{2}。$
(3)设点$C$关于$x$轴的对称点为$C',$则点$C'$的坐标为$(0,-3),$连接$AC'$交$x$轴于点$P,$此时$PA + PC$最小。
设直线$AC'$对应的函数解析式为$y = kx + n。$
把$C'(0,-3),$$A(1,2)$代入,得$\begin{cases}n = -3\\k + n = 2\end{cases},$
将$n = -3$代入$k + n = 2$得$k-3 = 2,$解得$k = 5。$
所以$y = 5x - 3。$
当$y = 0$时,$5x - 3 = 0,$$5x=3,$解得$x=\frac{3}{5}。$
所以点$P$的坐标是$(\frac{3}{5},0)。$