解:(1)在$y = - x - 2$中,令$x = 0,$则$y = - 2;$令$y = 0,$则$x = - 2。$
所以$A(-2,0),$$B(0,-2)。$所以$h = - 2,$$y = a(x + 2)^2。$
把$B(0,-2)$代入$y = a(x + 2)^2,$得$4a = - 2,$解得$a = -\frac{1}{2}。$
所以该抛物线对应的函数解析式为$y = -\frac{1}{2}(x + 2)^2。$
(2)因为点$C(m,-\frac{9}{2})$在抛物线$y = -\frac{1}{2}(x + 2)^2$上,所以$-\frac{1}{2}(m + 2)^2 = -\frac{9}{2},$
即$(m + 2)^2 = 9,$$m + 2=\pm3,$解得$m_1 = 1,$$m_2 = - 5。$
(3)把$D(-4,n)$代入$y = -\frac{1}{2}(x + 2)^2,$得$n = -\frac{1}{2}(-4 + 2)^2 = - 2。$所以$D(-4,-2)。$
因为$B(0,-2),$所以$BD// x$轴,$S_{\triangle ABD}=\frac{1}{2}\times2\times4 = 4。$
(4)存在。点$Q$的坐标为$(-2,-2)$或$(-2,2)。$