电子课本网 第37页

第37页

信息发布者:
B
$a\leqslant1$
$y_1>y_3>y_2$
解:(1)由题意,易得点$A$的坐标为$( - 1,0),$所以$OA = 1。$
因为$OB = OA = 1,$点$B$在$y$轴的负半轴上,所以点$B$的坐标为$(0,-1)。$
将$B(0,-1)$代入$y = a(x + 1)^2,$得$-1 = a(0 + 1)^2,$解得$a = - 1。$
所以抛物线对应的函数解析式为$y = -(x + 1)^2。$
(2)连接$OC。$将$C(-3,b)$代入$y = -(x + 1)^2,$得$b = -(-3 + 1)^2 = - 4,$所以$C(-3,-4)。$
$S_{\triangle ABC}=S_{\triangle OAC}+S_{\triangle OBC}-S_{\triangle AOB}=\frac{1}{2}\times1\times4+\frac{1}{2}\times1\times3-\frac{1}{2}\times1\times1$
$=2+\frac{3}{2}-\frac{1}{2}=3。$
解:(1)在$y = - x - 2$中,令$x = 0,$则$y = - 2;$令$y = 0,$则$x = - 2。$
所以$A(-2,0),$$B(0,-2)。$所以$h = - 2,$$y = a(x + 2)^2。$
把$B(0,-2)$代入$y = a(x + 2)^2,$得$4a = - 2,$解得$a = -\frac{1}{2}。$
所以该抛物线对应的函数解析式为$y = -\frac{1}{2}(x + 2)^2。$
(2)因为点$C(m,-\frac{9}{2})$在抛物线$y = -\frac{1}{2}(x + 2)^2$上,所以$-\frac{1}{2}(m + 2)^2 = -\frac{9}{2},$
即$(m + 2)^2 = 9,$$m + 2=\pm3,$解得$m_1 = 1,$$m_2 = - 5。$
(3)把$D(-4,n)$代入$y = -\frac{1}{2}(x + 2)^2,$得$n = -\frac{1}{2}(-4 + 2)^2 = - 2。$所以$D(-4,-2)。$
因为$B(0,-2),$所以$BD// x$轴,$S_{\triangle ABD}=\frac{1}{2}\times2\times4 = 4。$
(4)存在。点$Q$的坐标为$(-2,-2)$或$(-2,2)。$