电子课本网 第87页

第87页

信息发布者:
$400\pi$
15
$(2,-4)$
(2) 解:如图,连接$OC$交$AB$于点$D,$则$OC$垂直平分线段$AB.$$\therefore AD=\frac{1}{2}AB = 30$m.连接$OA.$设$\odot O$的半径为$r$m.$\therefore OC = OA = r$m.$\therefore OD = OC - CD=(r - 10)$m.在$Rt\triangle AOD$中,$\because OD^{2}+AD^{2}=OA^{2},$$\therefore (r - 10)^{2}+30^{2}=r^{2},$
展开式子得$r^{2}-20r + 100+900=r^{2},$
移项可得$-20r=-1000,$
解得$r = 50.$$\therefore \overset{\frown}{AB}$所在圆的半径为$50$m.
(1) 解:连接$OA.$设圆弧所在圆的半径为$r$m.由题意,得$AD=\frac{1}{2}AB = 30$m,$OD = OP - PD=(r - 18)$m.在$Rt\triangle ADO$中,由勾股定理,得$r^{2}=30^{2}+(r - 18)^{2},$
展开式子得$r^{2}=900+r^{2}-36r + 324,$
移项可得$36r=1224,$
解得$r = 34.$$\therefore$圆弧所在圆的半径为$34$m.
(2) 解:连接$OA'.$由题意,得$OE = OP - PE = 34 - 4 = 30$(m),$A'B' = 2A'E.$在$Rt\triangle A'EO$中,由勾股定理,得$A'E=\sqrt{A'O^{2}-OE^{2}}=\sqrt{34^{2}-30^{2}}=\sqrt{(34 + 30)(34 - 30)}=\sqrt{64\times4}=16$(m).$\therefore A'B' = 2A'E = 32$m.$\because 32>30,$$\therefore$不要采取紧急措施.