(1)解:因为$OA\perp OC,$所以$\angle AOC = 90^{\circ}。$
因为$\overset{\frown}{AD}=2\overset{\frown}{CD},$所以$\angle AOD = 2\angle COD,$所以$\angle COD=\frac{1}{3}\angle AOC = 30^{\circ}。$
(2)解:由(1),知$\angle AOD = 2\angle COD = 2\times30^{\circ}=60^{\circ}。$
因为$OA = OD,$所以$\triangle AOD$为等边三角形,所以$AD = OA = 4。$
(3)解:如图,过点$D$作$DE\perp OC,$交$\odot O$于点$E,$连接$AE,$交$OD,$$OC$于点$B,$$P,$连接$DP,$$OE,$则此时$AP + PD$的值最小。
根据圆的对称性,易得$E$是点$D$关于$OC$的对称点,$OC$是$DE$的垂直平分线,所以$PD = PE,$所以$AP + PD=AP + PE = AE。$
由(1),知$\angle COD = 30^{\circ},$所以$\angle COE=\angle COD = 30^{\circ},$所以$\angle DOE = 60^{\circ}。$
因为$\angle AOD = 60^{\circ},$所以$\angle DOE=\angle AOD。$
因为$AO = EO,$所以$OB\perp AE,$所以$AB = BE。$
在$Rt\triangle AOB$中,因为$\angle AOB = 60^{\circ},$所以$\angle OAB = 30^{\circ}。$
因为$OA = 4,$所以$OB=\frac{1}{2}OA = 2,$所以$AB=\sqrt{OA^{2}-OB^{2}}=\sqrt{4^{2}-2^{2}} = 2\sqrt{3},$所以$BE = AB = 2\sqrt{3}。$
所以$AE=AB + BE = 4\sqrt{3},$即$AP + PD$的最小值为$4\sqrt{3}。$