电子课本网 第89页

第89页

信息发布者:
D
$2\sqrt{3}$
(1)解:因为$OA\perp OC,$所以$\angle AOC = 90^{\circ}。$
因为$\overset{\frown}{AD}=2\overset{\frown}{CD},$所以$\angle AOD = 2\angle COD,$所以$\angle COD=\frac{1}{3}\angle AOC = 30^{\circ}。$
(2)解:由(1),知$\angle AOD = 2\angle COD = 2\times30^{\circ}=60^{\circ}。$
因为$OA = OD,$所以$\triangle AOD$为等边三角形,所以$AD = OA = 4。$
(3)解:如图,过点$D$作$DE\perp OC,$交$\odot O$于点$E,$连接$AE,$交$OD,$$OC$于点$B,$$P,$连接$DP,$$OE,$则此时$AP + PD$的值最小。
根据圆的对称性,易得$E$是点$D$关于$OC$的对称点,$OC$是$DE$的垂直平分线,所以$PD = PE,$所以$AP + PD=AP + PE = AE。$
由(1),知$\angle COD = 30^{\circ},$所以$\angle COE=\angle COD = 30^{\circ},$所以$\angle DOE = 60^{\circ}。$
因为$\angle AOD = 60^{\circ},$所以$\angle DOE=\angle AOD。$
因为$AO = EO,$所以$OB\perp AE,$所以$AB = BE。$
在$Rt\triangle AOB$中,因为$\angle AOB = 60^{\circ},$所以$\angle OAB = 30^{\circ}。$
因为$OA = 4,$所以$OB=\frac{1}{2}OA = 2,$所以$AB=\sqrt{OA^{2}-OB^{2}}=\sqrt{4^{2}-2^{2}} = 2\sqrt{3},$所以$BE = AB = 2\sqrt{3}。$
所以$AE=AB + BE = 4\sqrt{3},$即$AP + PD$的最小值为$4\sqrt{3}。$
解:连接$AE。$
因为四边形$ABCD$是平行四边形,所以$AD// BC,$所以$\angle GAD = \angle GBC,$$\angle DAE = \angle AEB。$
因为$AB = AE,$所以$\angle GBC = \angle AEB,$所以$\angle DAE = \angle GAD,$所以$\overset{\frown}{EF}=\overset{\frown}{FG}。$
解:连接$AC,$$BD。$
因为$C,$$D$是$\overset{\frown}{AB}$的三等分点,所以$AC = CD = BD,$且$\angle AOC=\frac{1}{3}\times90^{\circ}=30^{\circ}。$
因为$OA = OC,$所以$\angle OAC=\angle OCA = 75^{\circ}。$
因为$\angle AOB = 90^{\circ},$$OA = OB,$所以$\angle OAE=\angle OBF = 45^{\circ}。$
所以$\angle AEC=\angle OAE+\angle AOC=45^{\circ}+30^{\circ}=75^{\circ}。$
所以$\angle AEC=\angle ACE,$所以$AE = AC。$
同理,可证$BF = BD。$
所以$AE = BF = CD。$