电子课本网 第97页

第97页

信息发布者:
D
C
3或5
(1)解:过点$O$作$OP\perp BC$于点$P。$$\therefore\angle OPB = 90^{\circ}=\angle ACB。$
$\therefore OP// AC。$$\therefore\angle BOP=\angle A = 30^{\circ}。$$\therefore$在$Rt\triangle OBP$中,$BP=\frac{1}{2}BO=\frac{1}{2}m,$则$OP=\sqrt{BO^{2}-BP^{2}}=\sqrt{m^{2}-\left(\frac{1}{2}m\right)^{2}}=\frac{\sqrt{3}}{2}m。$
当直线$BC$与$\odot O$相切时,$\frac{\sqrt{3}}{2}m=\frac{1}{2},$解得$m=\frac{\sqrt{3}}{3}。$
(2)解:当直线$BC$与$\odot O$相离时,$m$的取值范围是$\frac{\sqrt{3}}{3}<m<4;$当直线$BC$与$\odot O$相交时,$m$的取值范围是$0<m<\frac{\sqrt{3}}{3}。$
(1)解:过点$P$作直线$x = 2$的垂线,垂足为$A。$
当点$P$在直线$x = 2$的右侧时,$AP=x - 2 = 3,$解得$x = 5。$$\because P$为正比例函数$y=\frac{3}{2}x$图象上的点,$\therefore y=\frac{3}{2}\times5=\frac{15}{2},$$\therefore P\left(5,\frac{15}{2}\right)。$
当点$P$在直线$x = 2$的左侧时,$PA = 2 - x = 3,$解得$x = - 1。$$\because P$为正比例函数$y=\frac{3}{2}x$图象上的点,$\therefore y=\frac{3}{2}\times(-1)=-\frac{3}{2},$$\therefore P\left(-1,-\frac{3}{2}\right)。$
综上所述,当$\odot P$与直线$x = 2$相切时,点$P$的坐标为$\left(5,\frac{15}{2}\right)$或$\left(-1,-\frac{3}{2}\right)。$
(2)解:当$\odot P$与直线$x = 2$相交时,$x$的取值范围是$-1<x<5;$当$\odot P$与直线$x = 2$相离时,$x$的取值范围是$x<-1$或$x>5。$