解:对于方程$2x^{2}-5x - 1 = 0,$
用配方法,首先将二次项系数化为1得$x^{2}-\frac{5}{2}x-\frac{1}{2}=0,$
移项得$x^{2}-\frac{5}{2}x=\frac{1}{2},$
配方得$x^{2}-\frac{5}{2}x+(\frac{5}{4})^{2}=\frac{1}{2}+(\frac{5}{4})^{2},$
即$(x - \frac{5}{4})^{2}=\frac{1}{2}+\frac{25}{16}=\frac{8 + 25}{16}=\frac{33}{16},$
开平方得$x - \frac{5}{4}=\pm\frac{\sqrt{33}}{4},$
解得$x_1=\frac{5+\sqrt{33}}{4},$$x_2=\frac{5-\sqrt{33}}{4}。$