电子课本网 第10页

第10页

信息发布者:
$-\frac{b}{a}$
$\frac{c}{a}$
$\geqslant0$
D
D
$-1$
$-3$
$4$
解:对于方程$2x^{2}-4x + 1 = 0,$
由韦达定理得$x_1 + x_2=-\frac{-4}{2}=2,$$x_1x_2=\frac{1}{2}。$
则$x_1x_2(x_1 + x_2)=\frac{1}{2}×2 = 1。$
解:对于方程​$2x^2-4x + 1 = 0,$​
由韦达定理得​$x_{1} + x_{2} = 2,$​​$x_{1}x_{2}=\frac {1}{2}。$​
​$ (x_{1} + 2)(x_{2} + 2)=x_{1}x_{2}+2x_{1}+2x_{2} + 4$​
​$=x_{1}x_{2}+2(x_{1} + x_{2})+4$​
​$=\frac {1}{2}+2×2 + 4$​
​$=\frac {1}{2}+4 + 4$​
​$=\frac {1 + 8+8}{2}$​
​$=\frac {17}{2}。$​
解:对于方程$2x^{2}-4x + 1 = 0,$
由韦达定理得$x_1 + x_2 = 2,$$x_1x_2=\frac{1}{2}。$
$\frac{1}{x_1}+\frac{1}{x_2}=\frac{x_2+x_1}{x_1x_2}=\frac{2}{\frac{1}{2}} = 4。$
解:对于方程​$2x^2-4x + 1 = 0,$​
由韦达定理得​$x_{1} + x_{2} = 2,$​​$x_{1}x_{2}=\frac {1}{2}。$​
​$ (x_{1} - x_{2})^2=(x_{1} + x_{2})^2-4x_{1}x_{2}$​
​$=2^2-4×\frac {1}{2}$​
​$=4 - 2$​
​$=2。$​