电子课本网 第11页

第11页

信息发布者:
证明: (1) 连接$DF。$因为$AD$为$\odot O$的直径,所以$\angle AFD = 90^{\circ}。$因为四边形$ABCD$为菱形,所以$AD// BC,$$AD = CD = AB = BC,$$\angle A=\angle C。$因为$BE = BF,$所以$BC - BE = AB - BF,$所以$CE = AF。$在$\triangle CDE$和$\triangle ADF$中,$\begin{cases}CD = AD\\\angle C=\angle A\\CE = AF\end{cases},$所以$\triangle CDE\cong\triangle ADF,$所以$\angle CED=\angle AFD = 90^{\circ},$所以$\angle ADE=\angle CED = 90^{\circ},$所以$OD\perp DE。$因为$OD$为$\odot O$的半径,所以$DE$为$\odot O$的切线。
(2) 连接$AH。$因为$AD$为$\odot O$的直径,所以$\angle AHD = 90^{\circ},$所以$AH\perp BD。$因为$AB = AD,$所以$DH=\frac{1}{2}BD。$因为$DH=\sqrt{5},$所以$BD = 2DH = 2\sqrt{5}。$因为$\angle AFD = 90^{\circ},$所以$\angle BFD = 180^{\circ}-\angle AFD = 90^{\circ}。$因为$BF = 2,$所以$DF=\sqrt{BD^{2}-BF^{2}} = 4。$设$\odot O$的半径为$r,$则$AB = AD = 2r,$所以$AF = AB - BF = 2r - 2。$因为$AF^{2}+DF^{2}=AD^{2},$所以$(2r - 2)^{2}+4^{2}=(2r)^{2},$解得$r=\frac{5}{2}。$故$\odot O$的半径为$\frac{5}{2}。$
解: (1) $AB = AC。$理由如下:因为$AB$与$\odot O$相切于点$B,$所以$OB\perp AB,$所以$\angle OBA = 90^{\circ},$所以$\angle OBP+\angle ABC = 90^{\circ}。$因为$OA\perp AC,$所以$\angle OAC = 90^{\circ},$所以$\angle APC+\angle ACB = 90^{\circ}。$因为$OP = OB,$所以$\angle OBP=\angle OPB。$因为$\angle OPB=\angle APC,$所以$\angle OBP=\angle APC,$所以$\angle ACB=\angle ABC,$所以$AB = AC。$
(2) 设$\odot O$的半径为$x,$则$OP = OB = x。$因为$OA = 5,$所以$AP = OA - OP = 5 - x。$因为$\angle OBA = 90^{\circ},$所以$AB^{2}=OA^{2}-OB^{2}=-x^{2}+25。$因为$\angle OAC = 90^{\circ},$$PC = 2\sqrt{5},$所以$AC^{2}=PC^{2}-AP^{2}=-x^{2}+10x - 5。$因为$AB = AC,$所以$AB^{2}=AC^{2},$所以$-x^{2}+25=-x^{2}+10x - 5,$解得$x = 3。$故$\odot O$的半径为$3。$
(3) 作出线段$AC$的垂直平分线$MN,$过点$O$作$OE\perp MN$于点$E,$则$OE=\frac{1}{2}AC=\frac{1}{2}AB=\frac{1}{2}\sqrt{5^{2}-r^{2}}\leq r,$解得$r\geq\sqrt{5}。$又$\odot O$与直线$l$相离,$OA = 5,$所以$r\lt5。$故$\odot O$的半径$r$的取值范围为$\sqrt{5}\leq r\lt5。$