解: (1) $AB = AC。$理由如下:因为$AB$与$\odot O$相切于点$B,$所以$OB\perp AB,$所以$\angle OBA = 90^{\circ},$所以$\angle OBP+\angle ABC = 90^{\circ}。$因为$OA\perp AC,$所以$\angle OAC = 90^{\circ},$所以$\angle APC+\angle ACB = 90^{\circ}。$因为$OP = OB,$所以$\angle OBP=\angle OPB。$因为$\angle OPB=\angle APC,$所以$\angle OBP=\angle APC,$所以$\angle ACB=\angle ABC,$所以$AB = AC。$
(2) 设$\odot O$的半径为$x,$则$OP = OB = x。$因为$OA = 5,$所以$AP = OA - OP = 5 - x。$因为$\angle OBA = 90^{\circ},$所以$AB^{2}=OA^{2}-OB^{2}=-x^{2}+25。$因为$\angle OAC = 90^{\circ},$$PC = 2\sqrt{5},$所以$AC^{2}=PC^{2}-AP^{2}=-x^{2}+10x - 5。$因为$AB = AC,$所以$AB^{2}=AC^{2},$所以$-x^{2}+25=-x^{2}+10x - 5,$解得$x = 3。$故$\odot O$的半径为$3。$
(3) 作出线段$AC$的垂直平分线$MN,$过点$O$作$OE\perp MN$于点$E,$则$OE=\frac{1}{2}AC=\frac{1}{2}AB=\frac{1}{2}\sqrt{5^{2}-r^{2}}\leq r,$解得$r\geq\sqrt{5}。$又$\odot O$与直线$l$相离,$OA = 5,$所以$r\lt5。$故$\odot O$的半径$r$的取值范围为$\sqrt{5}\leq r\lt5。$